Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Uk Lee

Department of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong Nam-ku, Pusan 608-737, Republic of Korea

Correspondence e-mail: uklee@pknu.ac.kr

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (Cr–O) = 0.003 Å H-atom completeness 83% R factor = 0.029 wR factor = 0.073 Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dipotassium heptahydrogenhexamolybdochromate(III) octahydrate, the first heptaprotonated Anderson-type polyoxometalate

The title compound, K₂[H₇CrMo₆O₂₄]·8H₂O, contains an unexpectedly protonated polyanion, [H₇CrMo₆O₂₄]²⁻ in the B series Anderson-type heteropolyoxomolybdate. It was obtained by recrystallizing K₃[H₆CrMo₆O₂₄]·*n*H₂O at pH 1.80. The asymmetric unit contains two crystallographically independent polyanions that have C_i ($\overline{1}$) symmetry. Six O atoms of the central CrO₆ octahedron and one atom of an edge-shared MoO₆ octahedron are protonated.

Comment

Since the first crystal structure report of Na₃[Cr(OH)₆-Mo₆O₁₈]·8H₂O (Perloff, 1970), many crystal structures of B series Anderson-type (Anderson, 1937) heteropolyanions (Tsigdinos, 1978) consisting of a heteroatom X with a low oxidation state and a protonated polyanion with six H⁺ of general formula $[X^{n+}(OH)_6Mo_6O_{18}]^{(6-n)-}$ [X: Co³⁺ (Nagano *et al.*, 1990; Nolan *et al.*, 1998; Lee *et al.*, 2001), Al³⁺ (Lee *et al.*, 1991), Rh³⁺ (Ozawa *et al.* 1991), Cu²⁺(Ito *et al.*, 1989), Ni²⁺(Lee *et al.*, 2004)] have been reported. Usually, these B series Anderson-type heteropolyanion species are isolated in a pH range of 3-4. The six H atoms attached to the O atoms of the central [XO₆] octahedron are known to be non-acidic. For the past four decades, the existence of protonated species with more than seven H⁺ has not been expected in the B series Anderson-type heteropolyacomolybdate system.

The title compound, dipotassium heptahydrogen hexamolybdochromate(III) octadecahydrate, $K_2[H_7CrMo_6O_{24}]$ -8H₂O, (I), has two crystallographically independent polyanions (Polyanion *A* and *B*; Fig. 1). All composite atoms, except for two central Cr atoms and two H atoms in the polyanion, are located in general positions, and the Cr atoms lie on inversion centres. The O atoms are labelled in the same way as previously by Lee *et al.* (2001), *viz.* O_c, O_b, O_b and O_w-

The Mo3-O5_{*b*}, Mo4-O5_{*b*}, Mo4-O16_{*b*} and Mo5-O16_{*b*} bond distances are longer than the unprotonated Mo-O_{*b*} bond distances and the bond angles at these O atoms are

Received 29 November 2006 Accepted 6 December 2006

inorganic papers

All rights reserved

© 2007 International Union of Crystallography

Polyanion B

Figure 1

Two discrete polyanion structures in (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms are not shown. [Symmetry codes: (i) 1 - x, -y, 2 - z; (ii) 1 - x, 1 - y, 1 - z.]

Figure 2

Polyhedral view of the heteropolyanions in (I) with $O \cdots O$ contacts of the inter-polyanion hydrogen bonds shown as dashed lines. [Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) x, y, z - 1; (iii) x, 1 + y, z; (iv) 1 - x, 1 - y, 1 - z; (v) 1 - x, 1 - y, 2 - z.]

smaller than at the unprotonated O atoms (Table 1). Polyanions A and B are connected by strong hydrogen bonds. K^+ ions are coordinated by eight O atoms, viz. $[K1(O_t)_4(O_w)_4]^+$ and $[K2(O_t)_4(O_b)(O_w)_3]^+$ in the distance range 2.724 (3)-3.081 (3)Å.

Experimental

The title compound was obtained by recrystallization from an aqueous solution of K₃[H₆CoMo₆O₂₄]·nH₂O (Lee et al., 2001) at pH 1.80.

Crystal data

$K_2[H_7CrMo_6O_{24}]\cdot 8H_2O$	$V = 1395.08 (14) \text{ Å}^3$
$M_r = 1241.02$	Z = 2
Triclinic, P1	$D_x = 2.954 \text{ Mg m}^{-3}$
a = 10.4733 (6) Å	Mo $K\alpha$ radiation
b = 10.8698 (6) Å	$\mu = 3.40 \text{ mm}^{-1}$
c = 12.6540 (7) Å	T = 173 (2) K
$\alpha = 99.309 \ (1)^{\circ}$	Block, purple
$\beta = 94.465 \ (1)^{\circ}$	$0.32 \times 0.25 \times 0.20 \text{ mm}$
$\gamma = 99.256 \ (1)^{\circ}$	

Data collection

Bruker SMART CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1999) $T_{\min} = 0.380, \ T_{\max} = 0.512$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.029$ wR(F²) = 0.074 S = 1.195360 reflections 408 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (\mathring{A}°)

 $w = 1/[\sigma^2(F_o^2) + (0.0228P)^2]$ + 4.6144*P*] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.85 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.85 \text{ e } \text{\AA}^{-3}$

10855 measured reflections

 $R_{\rm int} = 0.025$

 $\theta_{\rm max} = 26.0^{\circ}$

5360 independent reflections

5200 reflections with $I > 2\sigma(I)$

Extinction correction: SHELXL97 Extinction coefficient: 0.0065 (2)

selected geometric parameters (A,).							
Cr1-O1C	1.969 (3)	Mo3-O3C	2.236 (3)				
Cr1 - O2C	1.976 (3)	Mo3-O5B	2.000 (3)				
Cr1 - O3C	1.975 (3)	Mo3-O6B	1.882 (3)				
Cr2-O13C	1.974 (3)	Mo4-O16B	1.993 (3)				
Cr2-O14C	1.980 (3)	Mo4-O17B	1.921 (3)				
Cr2-O15C	1.978 (3)	$Mo4-O14C^{ii}$	2.309 (3)				
Mo1-O1C	2.305 (3)	$Mo4-O15C^{ii}$	2.275 (3)				
Mo1-O2C	2.324 (3)	Mo5-O13C	2.306 (3)				
Mo1-O4B	1.943 (3)	$Mo5-O15C^{ii}$	2.272 (3)				
$Mo1 - O6B^i$	1.965 (3)	Mo5-O16B	2.000 (3)				
Mo2-O2C	2.295 (3)	Mo5-O18B	1.900 (3)				
Mo2-O3C	2.283 (3)	Mo6-O13C	2.310 (3)				
Mo2-O4B	1.915 (3)	Mo6-O14C	2.302 (3)				
Mo2-O5B	1.986 (3)	$Mo6 - O17B^{ii}$	1.917 (3)				
$Mo3 - O1C^{i}$	2.324 (3)	Mo6-O18B	1.965 (3)				
Mo1-O1C-Mo3 ⁱ	91.44 (11)	Mo5-O13C-Mo6	92.44 (10)				
Mo2-O2C-Mo1	92.13 (11)	Mo6-O14C-Mo4 ⁱⁱ	91.62 (10)				
Mo3-O3C-Mo2	97.78 (11)	Mo5 ⁱⁱ -O15C-Mo4 ⁱⁱ	97.58 (11)				
Mo2-O4B-Mo1	119.10 (15)	Mo4-O16B-Mo5	117.88 (14)				
Mo2-O5 <i>B</i> -Mo3	117.37 (14)	Mo6 ⁱⁱ -O17 <i>B</i> -Mo4	118.96 (14)				
$Mo3-O6B-Mo1^{i}$	118.93 (14)	Mo5-O18B-Mo6	119.15 (14)				

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) -x + 1, -y + 1, -z + 1.

Table 2Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1C-H1\cdots O22_t^{iii}$	0.73 (5)	2.10 (5)	2.796 (4)	160 (5)
$O5B-H5\cdots O16B^{iv}$	0.71 (8)	1.79 (8)	2.475 (4)	163 (13)
$O13C - H13 \cdots O12_t^{iv}$	0.98	1.81	2.733 (4)	155
$O16B - H16 \cdots O5B^{iv}$	0.83 (8)	1.65 (8)	2.475 (4)	175 (11)
$O25_w - H25B \cdots O21_t$	0.97	2.22	2.844 (4)	121
$O25_w - H25A \cdots O20_t$	0.97	1.86	2.828 (4)	172
$O26_w - H26A \cdots O4B^i$	0.97	2.07	2.755 (4)	127
$O27_w - H27B \cdots O32_w$	0.75 (6)	2.10 (6)	2.842 (6)	174 (7)
$O28_w - H28B \cdots O31_w^v$	0.96	1.83	2.719 (5)	153
$O28_w - H28A \cdots O12_t^{vi}$	0.96	1.95	2.789 (4)	144
$O29_w - H29A \cdots O11_t^i$	0.96	2.19	2.957 (5)	136
$O29_w - H29B \cdots O29_w^{vii}$	0.96	2.50	2.968 (8)	110
$O29_w - H29B \cdots O10_t^{i}$	0.96	2.01	2.928 (5)	160
$O30_w - H30B \cdots O32w$	0.96	2.51	2.953 (6)	108
$O30_w - H30B \cdots O7_t$	0.96	2.57	3.069 (6)	113

Symmetry codes: (i) -x + 1, -y, -z + 2; (iii) x, y, z + 1; (iv) -x + 1, -y, -z + 1; (v) -x + 1, -y + 1, -z + 2; (vi) x, y + 1, z; (vii) -x + 2, -y + 1, -z + 2.

H atoms were located in difference Fourier maps, but only H1, H5, H16 and H27*B* were refined isotropically. Other H atoms were placed in calculated positions and included in the refinement of the riding-motion approximation, with $U_{iso}(H) = 1.5U_{eq}(O)$. The site occupancy of H5 and H16 is 0.5 because they are mutally disordered. The H atoms of O31_w and O32_w could not be located in an electron density map and were excluded from the refinement.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXL97*.

References

- Anderson, J. S. (1937). Nature (London), 140, 850.
- Brandenburg, K. (1998). *DIAMOND*. Version 2.1. Crystal Impact GbR, Bonn, Germany.
- Bruker (1997). SMART and SAINT. Versions 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Ito, F., Ozeki, T., Ichida, H., Miyamae, I. & Sasaki, Y. (1989). Acta Cryst. C45, 946-947.
- Lee, H. Y., Park, K. M. & Lee, U. (1991). Acta Cryst. C47, 1959-1961.
- Lee, U. & Joo, H. Y. (2004). Acta Cryst. E60, i33-i36.
- Lee, U., Joo, H. Y., Kwon, J. S. & Cho, M. A. (2001). Acta Cryst. E57, i112-i114. Nagano, O., Lee, U., Ichida, H. & Sasaki, Y. (1990). Bull. Korean Chem. Soc.
- 11, 15–19. Nolan, A. L., Allen, C. C., Burns, R. C., Craig, D. C. & Lawrance, G. A. (1998).
- Nolan, A. L., Allen, C. C., Burns, K. C., Craig, D. C. & Lawrance, G. A. (1998). Aust. J. Chem. **51**, 825–834.
- Ozawa, Y., Hayashi, Y. & Isobe, K. (1991). Acta Cryst. C47, 637-638.
- Perloff, A. (1970). Inorg. Chem. 9, 2228-2239.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.
- Tsigdinos, G. A. (1978). Top. Curr. Chem. 76, 36-40.